• Rafael Martins Ronqui
  • Thiago Carlos de Sousa Oliveira
  • Alexandre Luis Bastos da Silva
  • Carlos Eduardo Brandão
  • Rodrigo Rubens da Silva
  • William Boscardini Helouani
  • Tiago Lara
  • Eduardo de Rezende Francisco



Big Data Analytics, Data Lake, Social Impact, Brazil, COVID-19


The digital transformation has been accountable for major socio-cultural and economic changes, requiring different management solutions from governments and corporations. Data have a fundamental role due to their contribution to the decision-making process. An unexpected accelerator of these changes was a virus that paralyzed Brazil and the world, generating social isolation and freezing the economy while all the attention turned on how to contain and mitigate it. The social and economic impacts, especially on the low-income Brazilian population, were immediate. In May 2020, Dataprev (Social Security Technology and Information Company)'s core capabilities were used to put in place in 14 days the Emergency Aid program, fundamental to prevent the impacts from being even greater for the Brazilian population. In this study, we present the role and relevance of using technology and big data analytics (BDA) as the basis for the implementation of the largest aid program ever developed in the country, in which the Government invested R$ 265 billion (50 billion USD) and benefited more than 65 million people.


Agrawal, S., & Patel, A. (2016). A Study on Graph Storage Database of NOSQL. International Journal on Soft Computing, Artificial Intelligence and Applications, 5(1). DOI:

Ahmed, M. R., Khatun, M. A., Ali, M. A., & Sundaraj, K. (2018). A literature review on NoSQL database for big data processing. International Journal of Engineering and Technology(UAE), 7(2), 902–906. DOI:

Amin, A., Muttoo, M. A., & Bhatia, K. (2018). NOSQL: A Very Dynamic Approach for Managing Big Data. International Journal of Trend in Scientific Research and Development, Volume-2(Issue-4), 71–73. DOI:

BCB. (2020). Banco Central do Brasil. Retrieved 04 january de 2021, from -

Blofield, M., Lustig, N., & Trasberg, M. (2021). Social Protection During the Pandemic: Argentina, Brazil, Colombia, and Mexico.

Brewer, E. A. (2000). Towards robust distributed systems (abstract). DOI:

Buneman, P. (1997). Semistructured Data. Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 117–121. DOI:

Carlson, J. (2020). Redis In Action e-book. Manning.

Casa Civil. (2020). Auxílio Emergencial chega a 29 milhões de domicílios em outubro.

Cattell, R. (2010). Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4), 12–27. DOI:

CEF. (2021). Caixa Econômica Federal. Retrieved 04 january 2021, from

Čerešňák, R., & Kvet, M. (2019). Comparison of query performance in relational a non-relation databases. Transportation Research Procedia, 40, 170–177. DOI:

Cetrángolo, O., & Curcio, J. (2020). Los programas sociales para atender los efectos de la pandemia en Argentina en su primera etapa.

Chen, H., Chiang, R. H. L., Storey, V. C., & Robinson, J. M. (2012). Special Issue: Business Intelligence Research Business Intelligence and Analytics: From Big Data To Big Impact. MIS Quarterly , 36(4), 1165–1188. DOI:

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209. DOI:

Chopade, R., & Pachghare, V. K. (2019). Ten years of critical review on database forensics research. Digital Investigation, 29, 180–197. DOI:

Cidadania, M. da. (2020). Ministério da Cidadania do Brasil. Retrieved 04 january 2021, from

Dataprev. (2020). Empresa de Tecnologia e Informações da Previdência Social. Retrieved 04 january 2021, from

Dave, M. (2016). International Journal of Advanced Research in SQL and NoSQL Databases. International Journal of Advanced Research in Computer Science and Software Engineering Research, II(8).

Duque, D. (2020). Pobreza e Desigualdade aumentam de novo PNAD Covid mostrou impacto do Auxilio Emergencial nos indicadores sociais. Instituto Brasileiro de Economia.

Eberendu, A. C. (2016). Unstructured Data: an overview of the data of Big Data. International Journal of Computer Trends and Technology, 38(1), 46–50. DOI:

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., Foufou, S., & Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 267–279. DOI:

Fahd, K., Venkatraman, S., & Khan Hammeed, F. (2019). A Comparative Study of NOSQL System Vulnerabilities with Big Data. International Journal of Managing Information Technology, 11(4), 1–19. DOI:

Fraczek, K., & Plechawska-Wojcik, M. (2017). Comparative analysis of relational and non-relational databases in the context of performance in web applications. Communications in Computer and Information Science, 716(October), 153–164. DOI:

Francisco, E. R. (2017). Indicações Bibliográficas - Big data analytics e ciência de dados: Pesquisa e tomada de decisão. Revista de Administração de Empresas.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. DOI:

Gold, R. L. (1958). Roles in sociological field observations. Social Forces. DOI:

Govbr. (2020). Governo do Brasil - Dataprev e Ministério da Cidadania lançam portal de consulta à situação do auxílio emergencial. Retrieved 12 january 2021, from

Grover, P., & Kar, A. K. (2017). Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature. Global Journal of Flexible Systems Management, 18(3), 203–229. DOI:

Gudivada, V. N., Rao, D., & Raghavan, V. V. (2014). NoSQL Systems for Big Data Management. 190–197. DOI:

Gupta, A., Tyagi, S., Panwar, N., Sachdeva, S., & Saxena, U. (2018). NoSQL databases: Critical analysis and comparison. 2017 International Conference on Computing and Communication Technologies for Smart Nation, IC3TSN 2017, 2017-Octob (October 2017), 293–299. DOI:

Gyorödi, C., Gyorödi, R., & Sotoc, R. (2015). A Comparative Study of Relational and Non-Relational Database Models in a Web- Based Application. International Journal of Advanced Computer Science and Applications, 6(11), 78–83. DOI:

Helouani, W. Boscardini. 2021. How Can Firms Effectively Use Technology in Customer Journey Management. Technology Innovation Management Review, 11(7/8): 32-47. DOI:

IBGE. (2021). Instituto Brasileiro de Geográfia e Estática (2021). Retrieved 04 january 2021, from

Ishwarappa, & Anuradha, J. (2015). A brief introduction on big data 5Vs characteristics and hadoop technology. Procedia Computer Science, 48(C), 319–324. DOI:

Kaisler, S., Armour, F., Espinosa, J., & Money, W. (2013). Big Data: Issues and Challenges Moving Forward. In Proceedings of the Annual Hawaii International Conference on System Sciences. DOI:

Khasawneh, T. N., Al-Sahlee, M. H., & Safia, A. A. (2020). SQL, NewSQL, and NOSQL Databases: A Comparative Survey. 2020 11th International Conference on Information and Communication Systems, ICICS 2020, April, 13–21. DOI:

Khine, P. P., & Wang, Z. S. (2018). Data lake: a new ideology in big data era. ITM Web of Conferences, 17, 03025. DOI:

Kumar, R. (2017). How to use Redis for real-time stream processing Handling fast data ingest in Redis. InfoWorld.

Limongi, R., Ronqui, R. M., Coelho, P. P., & Francisco, E. de R. (2023). No public surveys, no data? A proposal for income forecast in brazilian municipalities. Revista Ibero-Americana De Estratégia, 22(1), e22993. DOI:

Lin, Y., Jun, Z., Hongyan, M., Zhongwei, Z., & Zhanfang, F. (2018). A method of extracting the semi-structured data implication rules. Procedia Computer Science, 131, 706–716. DOI:

Llave, M. R. (2018). Data lakes in business intelligence: Reporting from the trenches. Procedia Computer Science, 138, 516–524. DOI:

Luiz Marietto, M., & Sanches, C. (2013). Strategy as Practice: A study of the practices of strategic action in the SMEs store cluster. INTERNATIONAL JOURNAL OF MANAGEMENT & INFORMATION TECHNOLOGY. DOI:

McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 4.

Miloslavskaya, N., & Tolstoy, A. (2016). Big Data, Fast Data and Data Lake Concepts. Procedia Computer Science, 88, 300–305. DOI:

Moniruzzaman, A. B. M., & Hossain, S. A. (2013). NoSQL Database: New Era of Databases for Big data Analytics - Classification, Characteristics and Comparison. International Journal of Database Theory and Application, 1–7.

Padhy, R. P., Patra, M. R., & Satapathy, S. C. (2011). RDBMS to NoSQL: Reviewing Some Next-Generation Non-Relational Database’s. International Journal of Advanced Engineering Sciences and Technologies, 11(11), 15–30. (2020). Introduction to Redis. Internet, 2020.

Reinsel, D., Gantz, J., & Rydning, J. (2017). Data Age 2025 : Don ’t Focus on Big Data; Focus on the Data That’s Big. IDC White Paper.

República, P. da. (2020). Planalto da República - Retrieved 04 january 2021, from

Saxena, U., & Sachdeva, S. (2018). An insightful view on security and performance of NoSQL databases. Communications in Computer and Information Science, 799 (March 2018), 643–653. DOI:

Sharma, S., Tim, U. S., Gadia, S., Wong, J., Shandilya, R., & Peddoju, S. K. (2015). Classification and comparison of NoSQL big data models. International Journal of Big Data Intelligence, 2(3), 201. DOI:

Silva, R. R., Larieira, C. L. C., de Souza Meirelles, F., & dos Reis, A. M. P. (2023). ORGANIZATIONAL AMBIDEXTERITY: A PATH TO DIGITAL TRANSFORMATION IN SMALL AND MEDIUM ENTERPRISES. COGNITIONIS Scientific Journal, 6(2), 480-504. (DOI): 10.38087/2595.8801.207.

Sint, R., Schaffert, S., Stroka, S., & Ferstl, R. (2009). Combining unstructured, fully structured and semi-structured information in semantic wikis. CEUR Workshop Proceedings, 464, 73–87.

Sumner, A., Hoy, C., & Ortiz-Juarez, E. (2020). Estimates of the impact of COVID-19 on global poverty. Unuwider, April, 1–9. DOI:

Vyawahare, H. R., Karde, P. . D., & Thakare, V. . D. (2017). Brief Review on SQL and NoSQL. International Journal of Trend in Scientific Research and Development (IJSTRD), 2(5), 748–751. DOI:

Weglarz, G. (2004). Two Worlds of Data Unstructured and Structured. DM Review.

World Bank Group. (2019). World Bank Country and Lending Groups. In World Bank Group.

Zikopoulos, P., & Eaton, C. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Education.




How to Cite

Ronqui, R. M., Oliveira, T. C. de S., da Silva, A. L. B., Brandão, C. E., da Silva, R. R., Helouani, W. B., Lara, T., & Francisco, E. de R. (2023). COVID-19 EMERGENCY AID: HOW THE BRAZILIAN GOVERNMENT USED SOCIAL BIG DATA ANALYTICS TO GIVE ECONOMIC SUPPORT AND PROTECT VULNERABLE CITIZENS. Revista Contemporânea, 3(8), 12537–12560.