COVID-19 EMERGENCY AID: HOW THE BRAZILIAN GOVERNMENT USED SOCIAL BIG DATA ANALYTICS TO GIVE ECONOMIC SUPPORT AND PROTECT VULNERABLE CITIZENS

Authors

  • Rafael Martins Ronqui
  • Thiago Carlos de Sousa Oliveira
  • Alexandre Luis Bastos da Silva
  • Carlos Eduardo Brandão
  • Rodrigo Rubens da Silva
  • William Boscardini Helouani
  • Tiago Lara
  • Eduardo de Rezende Francisco

DOI:

https://doi.org/10.56083/RCV3N8-143

Keywords:

Big Data Analytics, Data Lake, Social Impact, Brazil, COVID-19

Abstract

The digital transformation has been accountable for major socio-cultural and economic changes, requiring different management solutions from governments and corporations. Data have a fundamental role due to their contribution to the decision-making process. An unexpected accelerator of these changes was a virus that paralyzed Brazil and the world, generating social isolation and freezing the economy while all the attention turned on how to contain and mitigate it. The social and economic impacts, especially on the low-income Brazilian population, were immediate. In May 2020, Dataprev (Social Security Technology and Information Company)'s core capabilities were used to put in place in 14 days the Emergency Aid program, fundamental to prevent the impacts from being even greater for the Brazilian population. In this study, we present the role and relevance of using technology and big data analytics (BDA) as the basis for the implementation of the largest aid program ever developed in the country, in which the Government invested R$ 265 billion (50 billion USD) and benefited more than 65 million people.

References

Agrawal, S., & Patel, A. (2016). A Study on Graph Storage Database of NOSQL. International Journal on Soft Computing, Artificial Intelligence and Applications, 5(1). https://doi.org/10.5121/ijscai.2016.5104. DOI: https://doi.org/10.5121/ijscai.2016.5104

Ahmed, M. R., Khatun, M. A., Ali, M. A., & Sundaraj, K. (2018). A literature review on NoSQL database for big data processing. International Journal of Engineering and Technology(UAE), 7(2), 902–906. https://doi.org/10.14419/ijet.v7i2.12113. DOI: https://doi.org/10.14419/ijet.v7i2.12113

Amin, A., Muttoo, M. A., & Bhatia, K. (2018). NOSQL: A Very Dynamic Approach for Managing Big Data. International Journal of Trend in Scientific Research and Development, Volume-2(Issue-4), 71–73. https://doi.org/10.31142/ijtsrd12962. DOI: https://doi.org/10.31142/ijtsrd12962

BCB. (2020). Banco Central do Brasil. Retrieved 04 january de 2021, from - https://www.bcb.gov.br/publicacoes/focus.

Blofield, M., Lustig, N., & Trasberg, M. (2021). Social Protection During the Pandemic: Argentina, Brazil, Colombia, and Mexico. https://www.cgdev.org/sites/default/files/Note-Blofield_Lustig_Trasberg-Revised_0.pdf.

Brewer, E. A. (2000). Towards robust distributed systems (abstract). https://doi.org/10.1145/343477.343502. DOI: https://doi.org/10.1145/343477.343502

Buneman, P. (1997). Semistructured Data. Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 117–121. https://doi.org/10.1145/263661.263675. DOI: https://doi.org/10.1145/263661.263675

Carlson, J. (2020). Redis In Action e-book. Manning.

Casa Civil. (2020). Auxílio Emergencial chega a 29 milhões de domicílios em outubro. https://www.gov.br/casacivil/pt-br/assuntos/noticias/2020/dezembro/auxilio-emergencial-chega-a-29-milhoes-de-domicilios-em-outubro-segundo-pnad-covid-19.

Cattell, R. (2010). Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4), 12–27. https://doi.org/10.1145/1978915.1978919. DOI: https://doi.org/10.1145/1978915.1978919

CEF. (2021). Caixa Econômica Federal. Retrieved 04 january 2021, from https://www.caixa.gov.br/Downloads/caixa-demonstrativo-financeiro/Apresentacao_de_Resultados_3T20.pdf.

Čerešňák, R., & Kvet, M. (2019). Comparison of query performance in relational a non-relation databases. Transportation Research Procedia, 40, 170–177. https://doi.org/10.1016/j.trpro.2019.07.027. DOI: https://doi.org/10.1016/j.trpro.2019.07.027

Cetrángolo, O., & Curcio, J. (2020). Los programas sociales para atender los efectos de la pandemia en Argentina en su primera etapa. http://fcece.org.ar/wp-content/uploads/informes/las-cuentas-provinciales.pdf.

Chen, H., Chiang, R. H. L., Storey, V. C., & Robinson, J. M. (2012). Special Issue: Business Intelligence Research Business Intelligence and Analytics: From Big Data To Big Impact. MIS Quarterly , 36(4), 1165–1188. DOI: https://doi.org/10.2307/41703503

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209. https://doi.org/10.1007/s11036-013-0489-0. DOI: https://doi.org/10.1007/s11036-013-0489-0

Chopade, R., & Pachghare, V. K. (2019). Ten years of critical review on database forensics research. Digital Investigation, 29, 180–197. https://doi.org/10.1016/j.diin.2019.04.001. DOI: https://doi.org/10.1016/j.diin.2019.04.001

Cidadania, M. da. (2020). Ministério da Cidadania do Brasil. Retrieved 04 january 2021, from https://www.gov.br/cidadania/pt-br.

Dataprev. (2020). Empresa de Tecnologia e Informações da Previdência Social. Retrieved 04 january 2021, from https://portal2.dataprev.gov.br/conheca-dataprev-quem-somos/empresa.

Dave, M. (2016). International Journal of Advanced Research in SQL and NoSQL Databases. International Journal of Advanced Research in Computer Science and Software Engineering Research, II(8).

Duque, D. (2020). Pobreza e Desigualdade aumentam de novo PNAD Covid mostrou impacto do Auxilio Emergencial nos indicadores sociais. Instituto Brasileiro de Economia. https://blogdoibre.fgv.br/posts/pobreza-e-desigualdade-aumentam-de-novo-pnad-covid-mostrou-impacto-do-auxilio-emergencial-nos.

Eberendu, A. C. (2016). Unstructured Data: an overview of the data of Big Data. International Journal of Computer Trends and Technology, 38(1), 46–50. https://doi.org/10.14445/22312803/ijctt-v38p109. DOI: https://doi.org/10.14445/22312803/IJCTT-V38P109

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., Foufou, S., & Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 267–279. https://doi.org/10.1109/TETC.2014.2330519. DOI: https://doi.org/10.1109/TETC.2014.2330519

Fahd, K., Venkatraman, S., & Khan Hammeed, F. (2019). A Comparative Study of NOSQL System Vulnerabilities with Big Data. International Journal of Managing Information Technology, 11(4), 1–19. https://doi.org/10.5121/ijmit.2019.11401. DOI: https://doi.org/10.5121/ijmit.2019.11401

Fraczek, K., & Plechawska-Wojcik, M. (2017). Comparative analysis of relational and non-relational databases in the context of performance in web applications. Communications in Computer and Information Science, 716(October), 153–164. https://doi.org/10.1007/978-3-319-58274-0_13. DOI: https://doi.org/10.1007/978-3-319-58274-0_13

Francisco, E. R. (2017). Indicações Bibliográficas - Big data analytics e ciência de dados: Pesquisa e tomada de decisão. Revista de Administração de Empresas.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007. DOI: https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Gold, R. L. (1958). Roles in sociological field observations. Social Forces. https://doi.org/10.2307/2573808. DOI: https://doi.org/10.2307/2573808

Govbr. (2020). Governo do Brasil - Dataprev e Ministério da Cidadania lançam portal de consulta à situação do auxílio emergencial. Retrieved 12 january 2021, from https://www.gov.br/cidadania/pt-br/noticias-e-conteudos/desenvolvimento-social/noticias-desenvolvimento-soc.

Grover, P., & Kar, A. K. (2017). Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature. Global Journal of Flexible Systems Management, 18(3), 203–229. https://doi.org/10.1007/s40171-017-0159-3. DOI: https://doi.org/10.1007/s40171-017-0159-3

Gudivada, V. N., Rao, D., & Raghavan, V. V. (2014). NoSQL Systems for Big Data Management. 190–197. https://doi.org/10.1109/services.2014.42. DOI: https://doi.org/10.1109/SERVICES.2014.42

Gupta, A., Tyagi, S., Panwar, N., Sachdeva, S., & Saxena, U. (2018). NoSQL databases: Critical analysis and comparison. 2017 International Conference on Computing and Communication Technologies for Smart Nation, IC3TSN 2017, 2017-Octob (October 2017), 293–299. https://doi.org/10.1109/IC3TSN.2017.8284494. DOI: https://doi.org/10.1109/IC3TSN.2017.8284494

Gyorödi, C., Gyorödi, R., & Sotoc, R. (2015). A Comparative Study of Relational and Non-Relational Database Models in a Web- Based Application. International Journal of Advanced Computer Science and Applications, 6(11), 78–83. https://doi.org/10.14569/ijacsa.2015.061111. DOI: https://doi.org/10.14569/IJACSA.2015.061111

Helouani, W. Boscardini. 2021. How Can Firms Effectively Use Technology in Customer Journey Management. Technology Innovation Management Review, 11(7/8): 32-47. http://doi.org/10.22215/timreview/1455. DOI: https://doi.org/10.22215/timreview/1455

IBGE. (2021). Instituto Brasileiro de Geográfia e Estática (2021). Retrieved 04 january 2021, from https://www.ibge.gov.br/indicadores.

Ishwarappa, & Anuradha, J. (2015). A brief introduction on big data 5Vs characteristics and hadoop technology. Procedia Computer Science, 48(C), 319–324. https://doi.org/10.1016/j.procs.2015.04.188. DOI: https://doi.org/10.1016/j.procs.2015.04.188

Kaisler, S., Armour, F., Espinosa, J., & Money, W. (2013). Big Data: Issues and Challenges Moving Forward. In Proceedings of the Annual Hawaii International Conference on System Sciences. https://doi.org/10.1109/HICSS.2013.645. DOI: https://doi.org/10.1109/HICSS.2013.645

Khasawneh, T. N., Al-Sahlee, M. H., & Safia, A. A. (2020). SQL, NewSQL, and NOSQL Databases: A Comparative Survey. 2020 11th International Conference on Information and Communication Systems, ICICS 2020, April, 13–21. https://doi.org/10.1109/ICICS49469.2020.239513. DOI: https://doi.org/10.1109/ICICS49469.2020.239513

Khine, P. P., & Wang, Z. S. (2018). Data lake: a new ideology in big data era. ITM Web of Conferences, 17, 03025. https://doi.org/10.1051/itmconf/20181703025. DOI: https://doi.org/10.1051/itmconf/20181703025

Kumar, R. (2017). How to use Redis for real-time stream processing Handling fast data ingest in Redis. InfoWorld.

Limongi, R., Ronqui, R. M., Coelho, P. P., & Francisco, E. de R. (2023). No public surveys, no data? A proposal for income forecast in brazilian municipalities. Revista Ibero-Americana De Estratégia, 22(1), e22993. https://doi.org/10.5585/2023.22993. DOI: https://doi.org/10.5585/2023.22993

Lin, Y., Jun, Z., Hongyan, M., Zhongwei, Z., & Zhanfang, F. (2018). A method of extracting the semi-structured data implication rules. Procedia Computer Science, 131, 706–716. https://doi.org/10.1016/j.procs.2018.04.315. DOI: https://doi.org/10.1016/j.procs.2018.04.315

Llave, M. R. (2018). Data lakes in business intelligence: Reporting from the trenches. Procedia Computer Science, 138, 516–524. https://doi.org/10.1016/j.procs.2018.10.071. DOI: https://doi.org/10.1016/j.procs.2018.10.071

Luiz Marietto, M., & Sanches, C. (2013). Strategy as Practice: A study of the practices of strategic action in the SMEs store cluster. INTERNATIONAL JOURNAL OF MANAGEMENT & INFORMATION TECHNOLOGY. https://doi.org/10.24297/ijmit.v4i1.4633. DOI: https://doi.org/10.24297/ijmit.v4i1.4633

McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 4.

Miloslavskaya, N., & Tolstoy, A. (2016). Big Data, Fast Data and Data Lake Concepts. Procedia Computer Science, 88, 300–305. https://doi.org/10.1016/j.procs.2016.07.439. DOI: https://doi.org/10.1016/j.procs.2016.07.439

Moniruzzaman, A. B. M., & Hossain, S. A. (2013). NoSQL Database: New Era of Databases for Big data Analytics - Classification, Characteristics and Comparison. International Journal of Database Theory and Application, 1–7.

Padhy, R. P., Patra, M. R., & Satapathy, S. C. (2011). RDBMS to NoSQL: Reviewing Some Next-Generation Non-Relational Database’s. International Journal of Advanced Engineering Sciences and Technologies, 11(11), 15–30.

Redis.io. (2020). Introduction to Redis. Internet, 2020.

Reinsel, D., Gantz, J., & Rydning, J. (2017). Data Age 2025 : Don ’t Focus on Big Data; Focus on the Data That’s Big. IDC White Paper.

República, P. da. (2020). Planalto da República - Retrieved 04 january 2021, from http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/lei/l13982.htm.

Saxena, U., & Sachdeva, S. (2018). An insightful view on security and performance of NoSQL databases. Communications in Computer and Information Science, 799 (March 2018), 643–653. https://doi.org/10.1007/978-981-10-8527-7_54. DOI: https://doi.org/10.1007/978-981-10-8527-7_54

Sharma, S., Tim, U. S., Gadia, S., Wong, J., Shandilya, R., & Peddoju, S. K. (2015). Classification and comparison of NoSQL big data models. International Journal of Big Data Intelligence, 2(3), 201. https://doi.org/10.1504/ijbdi.2015.070602. DOI: https://doi.org/10.1504/IJBDI.2015.070602

Silva, R. R., Larieira, C. L. C., de Souza Meirelles, F., & dos Reis, A. M. P. (2023). ORGANIZATIONAL AMBIDEXTERITY: A PATH TO DIGITAL TRANSFORMATION IN SMALL AND MEDIUM ENTERPRISES. COGNITIONIS Scientific Journal, 6(2), 480-504. (DOI): 10.38087/2595.8801.207.

Sint, R., Schaffert, S., Stroka, S., & Ferstl, R. (2009). Combining unstructured, fully structured and semi-structured information in semantic wikis. CEUR Workshop Proceedings, 464, 73–87.

Sumner, A., Hoy, C., & Ortiz-Juarez, E. (2020). Estimates of the impact of COVID-19 on global poverty. Unuwider, April, 1–9. DOI: https://doi.org/10.35188/UNU-WIDER/2020/800-9

Vyawahare, H. R., Karde, P. . D., & Thakare, V. . D. (2017). Brief Review on SQL and NoSQL. International Journal of Trend in Scientific Research and Development (IJSTRD), 2(5), 748–751. DOI: https://doi.org/10.31142/ijtsrd7105

Weglarz, G. (2004). Two Worlds of Data Unstructured and Structured. DM Review.

World Bank Group. (2019). World Bank Country and Lending Groups. In World Bank Group.

Zikopoulos, P., & Eaton, C. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Education.

Downloads

Published

2023-08-23

How to Cite

Ronqui, R. M., Oliveira, T. C. de S., da Silva, A. L. B., Brandão, C. E., da Silva, R. R., Helouani, W. B., Lara, T., & Francisco, E. de R. (2023). COVID-19 EMERGENCY AID: HOW THE BRAZILIAN GOVERNMENT USED SOCIAL BIG DATA ANALYTICS TO GIVE ECONOMIC SUPPORT AND PROTECT VULNERABLE CITIZENS. Revista Contemporânea, 3(8), 12537–12560. https://doi.org/10.56083/RCV3N8-143

Issue

Section

Articles